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A method is presented for the convenient computation of the quantity e used for obtaining the values 
of normalized structure factor magnitudes from structure factor amplitudes, e has the value of unity 
for general reflections but can take on integral values which differ from unity for special classes of 
reflections. The method is based on the application of rotation operators which are easily formed from 
knowledge of the equivalent positions for the space group of interest. Only general positions are con- 
sidered. Proof is given here for the procedure which has been used heuristically in the program system 
titled XRAY72. 

The normalized structure factor, E, the form of the 
structure factor which has found widespread applica- 
tion in procedures for phase determination, is defined 
by 

N 

Eh=Vh/(% ~ f J h )  112 (1) 
j=l  

where the Fh are the crystal structure factors placed 
on an absolute scale and corrected for thermal motion. 
The vector h=(h,k,l) labels the plane in the crystal 
associated with a particular reflection, f~, is the atomic 
scattering factor of the j th  atom in a crystal unit cell 
containing N atoms and the quantity epsilon as a func- 
tion of h, eh, is an integer whose value depends upon 
the point-group symmetry and the reflection class. It 
is the objective of this note to present a simple rule 
for determining the values of ek appropriate to the 
various space groups. In particular, it will be seen that 
the rule is well suited for computation on a digital 
computer. 

A method for obtaining eL has been described by 
Wilson (1950). It is based upon a consideration of the 
effect on the statistics of classes of intensities by in- 
dividual symmetry elements of the space group of in- 
terest. This approach has not been conveniently pro- 
grammed for a digital computer. 

A second method for evaluating e~ follows from the 
definition (Karle & Hauptman, 1956) 

m°(h) + m~(h) 
~ = , (2) 

n 

where n is the symmetry number of the space group, 
m~(h) is a moment for which the indices i and k are 
labels, S'S'I' m~(h)= ~qlkdxdydz, (3) 

0 0 0  

{~-~(x,y,z; h) and rff--rlk(x,y,z; h) are the ith power 
of the real part and the kth power of the imaginary 

part, respectively, of the contribution of an atom to 
the structure factor as defined in the International 
Tables for X-ray Crystallography (1965). The defini- 
tion given by (2) serves for the centrosymmetric case 
(mo2-0), for pure imaginary reflections (m°=0) and 
also for the general noncentrosymmetric case (m °= 
m024= 0). The evaluation of the appropriate integrals for 
the individual space groups presents no difficulty. 
However, the moment integrals can be evaluated in 
general for all the space groups in terms of the sym- 
metry number and the number of equivalent reflec- 
tions which become identical for special conditions on 
h, k,/, the components of h. This evaluation affords the 
basis for a simple rule for the evaluation of eh which 
is well suited for computation on a digital computer. 

The rule is: ehk~ is the number of times the trans- 
formed vector, h, = (h,k, l),, is identical to a given re- 
flection, h-(h,k,l), under all the distinct pure rota- 
tional symmetry operations R of the space group; 
hr = hR,. 

The pure rotational symmetry group with elements 
R, the crystallographic point group, is the quotient sub- 
group of the space group by the translational sub- 
group. The set of all symmetry elements in the pure 
rotational symmetry group which leave h fixed is a 
subgroup called the isotropy subgroup. In these terms, 
the rule is: ehkt is the number of elements in the isot- 
ropy subgroup for the vector h in the pure rotational 
symmetry group of the space group. 

One way to achieve the implementation of this rule 
is to form the set of distinct vectors obtained from the 
application of all the distinct rotational symmetry op- 
erations, R, of the space group to a general choice of 
vector (h,k,l). This is followed by specialization of 
(h,k,l) and the observation of the number of initially 
distinct vectors which become equivalent. The latter 
is the value of gh for the particular specialization of 
the (h,k,l). This view of the rule is inherent in its 
proof which is presented below. 
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Reflection multiplicity is a contrasting concept which 
should be distinguished from the rule for Ch. The re- 
flection multiplicity is the number of distinct vectors 
obtained from h by applying all the distinct rotational 
symmetry operations R of the space group; ht =hRs. 

Proof of rule for eh 

The proof of the rule for the evaluation of eh follows 
from the general evaluation of (2) by means of the 
definition (3). There are some considerations which 
facilitate the proof: 

1. Instead of viewing ~ and r/as the condensed trig- 
onometric forms of the real and imaginary parts, re- 
spectively, of the contributions from an atom to the 
structure factor as listed in International Tables, ~ and 
r/ are viewed in terms of a sum of individual terms, 
one from each equivalent atomic position in the unit 
cell. 

2. The moment integrals in (2) involve ~2 and r/2 in 
the integrand of (3). In squaring the sum of terms 
referred to in consideration 1, the only contributions 
to (3) derive from the squares of the distinct individual 
terms. The cross terms formed from distinct contrib- 
utors integrate to zero. 

3. Since translational quantities occur in the argu- 
ments of the individual cosine and sine terms of ~ and 
r/respectively, because of the possible presence of glide 
planes and screw axes, it is necessary to make some 
further statements concerning how this affects the con- 
cepts of distinct terms under rotational operations. 
When the arguments of the individual cosines and sines 
are identical except for translational parts, extinction 
occurs unless all the translational parts are equal to 
integers which multiply 27c and hence may be omitted 
from the arguments. The value of eh where h charac- 
terizes a space-group extinction is meaningless. In other 
cases when the arguments of the individual cosines 
and sines differ independently of the translational parts, 
they are distinct because of the rotational parts of the 
symmetry operators, and the translational parts are 
superfluous to this categorization. It is for these rea- 
sons that we need concern ourselves only with the 
rotational parts of the symmetry operators to deter- 
mine how many terms are equivalent and how many 
are distinct in ~ and t? and for formulating the rule for 
the computation of eh, as given above. 

4. If there are p identical vectors generated by 
(h, k, l)~ = (h, k, l)Rt under all the distinct rotational sym- 
metry operations R of the space group, there will be 
nip distinct vectors, each occurring p times, where n is 
the symmetry number of the space group. The quantity 
nip is the reflection multiplicity defined above. The re- 
flection multiplicity, n/p, follows from the number of 
identical vectors generated, p, and the group properties 
of the rotational symmetry operators. 

Noncentrosymmetrie case 
For the qth atom in a general position in the unit cell, 

and 

N 

(~l,= ~ cos 2rch. r~j (4) 
j = l  

N 

r/qh = ~ sin 2~zh. r.s (5) 
j =  1 

where the sum ranges over the n equivalent atomic 
positions of the space group of interest. As noted, the 
translational parts in (4) and (5) are to be ignored and 
if these sums are squared, as required by (3), the con- 
tributions to (3) derive only from the squares of the 
distinct terms remaining in (4) and (5) after summing 
the identical ones (p of them). The cross terms in- 
tegrate to zero in (3). There are then nip distinct 
squared cosine terms and corresponding squared sine 
terms in ~h  and r/~h respectively, each having a weight 
o f p  2. Since cos 2 x + s i n  2 x =  1, it follows from (2) and 
(3) that 

p2(n/p) 
eh-- = p .  (6) 

n 

This completes the proof of the rule for the noncentro- 
symmetric case. 

Centrosymmetric case 
In the centrosymmetric case r/qh=0 and therefore 

m2=0. Each cosine term in ~qh, before identical ones 
are summed, has a coefficient of 2 and there are n/2 
such. After summing p identical ones there would be 
n/2p distinct ones from rotational operations, each with 
a coefficient of 2p. The contribution from a squared 
cosine function after integration in (3) is ½. It follows 
from (2) and (3) that 

4pZ(n/2p) 
eh = 2n = p  . (7) 

This completes the proof of the rule for the centro- 
symmetric ease. The proof for pure imaginary reflec- 
tions is comparable. 

Evidently, the foregoing proof is valid for atoms in 
general positions. This evaluation of eh is inherent in 
the work of Wilson (1950), Hauptman & Karle (1953) 
and Bertaut (1959). In the case that a significant pro- 
portion of the scattering matter in a crystal occupies 
special positions in the unit ceil, values for e obtained 
by the rule stated here would not be valid and the 
values for the normalized structure factors derived for 
the various subsets of indices for the space group should 
be treated with some caution. Depending upon how 
much information is at hand concerning the occupa- 
tion of special positions, it might be possible to esti- 
mate the uncertainties that are introduced. 

The rule for finding eh may be stated mathematically, 
as indicated by (6) and (7), in the form el, =p.  This rule 
is valid for centered space groups as well as primitive 
ones. When applied to centered cells, p is determined 
by considering the n distinct rotation operators as- 
sociated with the n equivalent coordinate triples which 
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are independent of the translations that form the cen- 
tered cell. Here the quantity n is again the number of 
equivalent points that would be found for general posi- 
tions in the primitive unit cell. These statements are 
evident from the nature of the transformation between 
primitive and centered cells. 

Examples 

The following examples serve to illustrate the applica- 
tion of eh =p, as it was first applied heuristically in the 
XRAY72 system of crystallographic computer pro- 
grams (Stewart, Kruger, Ammon, Dickinson & Hall, 
1972). By inspection of the coordinates of the equiv- 
alent points in a primitive space group (or the set of 
coordinates independent of the centering translations 
in a centered space group), it is possible to list the in- 
dependent rotation operators, R. The multiplications 
(h,k,1)R~ may then be carried out to give the various 
(h, k, l), which, on specialization, give the proper values 
for e. 

P2Jc 

R: 

x,y,z; x , l - y , z + ½ ;  

0 1 . ; 0 - 1  ; 
0 0 0 0 

- x , y + ½ , 1 - z ;  - x ,  - y ,  - z  

(_i R" 1 ; - 1  
O -  0 O -  

h," h,k,l; h,&l; h,k,i; h,k,i 
Class I hktlhkOI h0ll OkllhOOlOkO[ 00ll 

e I 1 1  I [ 2 I 1 1  2 I 2 I 2 I 
The values for e follow from the specialization of the 
ht and application of the rule eh =p. 

Aba2 
h,: h,k,l; h,/~,l; h,k,l; h, fc, l 
Class I hkZlhkOI h0Zl OkllhOOlOkO100Zl 

e I 1 1  1 1  2 I 2 I 2 [ 2 i 4 I 

P41212 
h," h,k,l; k,h,l; h,k,l; k,h,i; /~,h,l; h,k,i; k,h,l; h, fc, l 
Class I hhOlhOOlOkO 001 I 

e 1 2 1 2 1 2 1 4  I 

For all other classes, e= 1. 

P63/mmc 
hi: +(h,k,l; k,h+[c,l; h+fc, h,l; k,h,l; h+k,[c,l; 

h,h+k,l; h,k,i; k ,h+k,i;  h+fc, h,i; k,h,i; 
h+k,[c,l; h,h+k,i)  

Class I hktlhOOlOkO100t I hk0 I h0Zl 0ktl  
e I 1 [ 4 1  4 1 1 2 1  2 1  2 1  2 [ 

Class I hhOIhhOI hhZ l hhZ l 
1 4 1 4 1 2 1 2  I 

J.M.S. would like to acknowledge the helpful dis- 
cussions of G. J. Kruger and W. Keefe which led to 
the implementation of the rule in XRAY72. 
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